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ABSTRACT 

. In the finite-diff erence formulation of the two dimensional steady-state turbulent diffusion equation for solving 
evaporation problems, two difficulties arise caused by the automatic satisfaction of one of the boundary conditions 
a t  the surface and by the infinite size of the solution domain. A general numerical scheme is developed t o  overcome 
these difficulties by the use of appropriate transformations. The results of some numerical experiments show that the 
the longitudinal diffusion term is usually negligible and that, with suitable parameters for roughness and stability, 
power laws can be as useful for practical solutions as the more complicated logarithmic law. 

1. INTRODUCTION 

Evaporation as a phenomenon of steady turbulent 
diffusion of water vapor in air flowing over a free water 
surface can be described (e.g., Sutton 1934) by 

under appropriate boundary conditions. In this equation 
u is the mean velocity of the wind in the x direction p is the 
specific humidity of the air, and K,,, K,,, and K,, are the 
longitudinal, lateral, and vertical components of the eddy 
diffusivity. Due mainly to the mathematical complexity 
of the available functions describing the wind speed and 
the diffusivities in which the exact physical nature is far 
from understood, the complete exact solution of eq (1) 
for evaporation still seems an almost hopeless task. Pos- 
sible ways of obtaining approximate solutions are either 
to aim at analytical solutions after omitting terms from 
eq (1) that appear negligible and after making simplifying 
assumptions concerning the wind speed and the dif- 
fusivity or alternatively to replace eq (1) by its finite- 
difference form and to solve the resulting algebraic equa- 
tions. The former type of solutions has the advantage of 
providing perhaps more direct insight into the nature of 
the problem and to be more practical to  apply, whereas the 
latter allows the study of rather complicated physical 
situations and also the assessment of the errors intro- 
duced by various simplifications. Common simplifying 
assumptions that have been employed in the past to solve 
evaporation problems are that (1) the wind profile and the 
diffusivities can be represented by power functions of 
elevation z, (2) the longitudinal diffusion term is negli- 
gible, and (3) the lateral diffusion term is negligible. 

It has been shown recently (Brutsaert and Yeh 1969) 
that, for evaporation from extremely small water surfaces 
under neutral conditions, lateral diffusion probably con- 
tributes less than 13 percent of the average evaporation. 
Hence, for evaporating surfaces that are several orders of 
magnitude larger than, say, 1 cm2, assumption (3) appears 
indeed reasonable. However, as far as the authors know, 

to date no analysis has been performed on the sensitivity 
of solutions of eq (1) to  the use of assumptions (1) and (2). 

The main purpose of this paper is to present a numerical 
scheme of solution of 

The method of solution should be sufliciently general to 
allow the use of any mathematical form for the wind 
profile or for the diffusivity as functions of the turbulence 
structure in the lower atmosphere. As a first result, 
numerical experiments will then permit the evaluation of 
the validity of the assumptions mentioned above. 

9, PHYSICAL MODEL 
The following situation is considered: (1) a t  the water 

surface the specific humidity q=qm is saturated and con- 
stant; (2) far away from the water surface (i.e., as x+ 
k m ) ,  the specific humidity profile ga(z) is known; (3) 
at the ground surface of the land adjoining the water 
body, the vapor flux We, is constant and known. This 
gives the following boundary conditions: 

p=qm a t  z=O, -xo<z<xo, (2) 

g=q: a tz+wJ - m < x < m ,  (3) 

n=na(z> a t  z>o, txl--, (4) 
and 

in which pa is the density of the air; K,,, is the vertical 
diffusivity in the air if the water surface were not present; 
22, is the size of the water surface; q; is the value of 
q. at z = m  ; q., a function of z only, satisfies 

where r=Kzz/Kzza will be assumed a constant. 
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When p is solved from eq (l*), the water vapor flux at  
the water surface is given by 

and the average evaporation is given by 

(7) 

The wind speed is assumed to be a function of z only. 
Two different laws for the wind profile are of concern 
here (viz, the power law and the logarithmic law) : 

u=azm =aou*zm 

and 

where u, is the friction velocity, K 

constant, and zo is the roughness of 
former was used to studv the effect of 

is von K6rmbn's 
the surface. The 
forward diffusion, 

and the latter was used i o  investigate the validity of the 
assumption of the power law. With u given, K,, can be 
derived by Reynolds analogy to give from eq (9a) 

or from eq (9b) 

There is no similar analogy theory to  assure a mathe- 
matical derivation of K,, since the momentum transfer in 
the present case is one-dimensional. Nevertheless, it  will 
be assumed (Brutsaert 1967) that 

where d denotes the anisotropy between K,, and KLZ. 

3. SOLUTION WITH THE POWER LAW 
In the straightforward finite-difference representation of 

eq (1 *) with eq (sa) and (loa) subject to boundaryconditions 
(2) through (5)) two daculties arise immediately. First, 
boundary condition (5) is satisfied automatically when it 
is evaluated numerically at z=O. Second, the numerical 
domain has to  cover the whole upper half plane since 
boundary conditions (3) and (4) are at infinity. 

To overcome the first difficulty, one conveniently intro- 
duces the following dimensionless variables and trans- 
formations : 

~ = X / X O  X=(q-qa)/(qto-&) 
and (12) 

{= (mzo) -m/(l+Zm) zml fl+Zm) zm a, 

where qt is the value of qa at z=O. The purpose of the 
power m for z is to reduce z1-mi3x/az to axlac, so that eq 

(5)  is no longer automatically satisfied. To overcome the 
second difliculty, one transforms the upper half 5-f 
plane into a strip in the +-$ plane by means of the 
following transformation as suggested by Davies (1947) 
for a different problem: 

and 

It can be seen that this transformation brings the upper 
half plane (Le., the physical plane of the present problem 
reaching theoretically all the way to infinity) into a strip 
of height T ,  so that the working domain is easier to treat 
numerically. Thus, a square grid in the strip represents 
an outwardly increasing grid size in the physical plane; 
and most of the detail is obtained near the evaporating 
surface where it is of interest. 

With transformations (12) and (13), eq (1*) through 
(8) become 

where 

A=e(sinh 4 sin $ ) 2 ( 1 - m ) / m  sink2 4 cos2 ++cosh2 4 sin2 $, 

B=sinh 4 cosh 4 sin + cos ${ 1--E(sinh + sin $ ) 2 ( 1 - m ) I m  1, 
C=e(sinh 4 sin $)2(1-m)/m cosh2 + sin2 ++sinh2 4 cos2 $, 

D= sinh4 cosh4(2 cos2\1sin2++cosh2~ sin2\1-sinh24 cos2$) 
sin2 $+Sin2 $ 

X { e(sinh 4 sin $)2(1-m)/m-l} 

-(sinh + sin $)lIm sinh 4 cos $(sinh2 4+sin2 $), 

- sinGcos(L(2sinh2d cosh2d+sinh2d cos2+cosh2dsin2&.) 
sinh2 ++sin2 $ L -  

X { a(sinh 4 sin $)2(1-m)/m-1 1 
+(sinh 4 sin $)llm cosh + sin $ (sinh2++sin2 $), 

x=l  at  +=O, (17) 

x=O a t 4 = - ,  (18) 

and 

(19) 

The derivatives in eq (14) can be approximated by 
ratios of differences, and these differences are expressible 
in terms of functional values. For a square net with 

ax 
a+- --0 at$=O or$=n. 

423-910 0 - 7 1 d  
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spacing h, it can be shown (Forsythe and Wasow 1960) 
that the differential operator L can be approximated by 
the finite-difference operator Lh to  the order of h2: 

+x(NE)--x(NW)]-(2A+2C)x(P)} =O (20) 

where P denotes the coordinates of the grid point under 
consideration and N, E, S, W, NE, SE, SW, and NW denote 
north, east, etc., respectively. Since as a result of trans- 
formation (13) the semi-infinite strip has a width ?r that 
is an irrational number, it is difficult to choose a grid 
spacing h to make the whole domain a square net. There- 
fore, as shown in figure 1, a square net is used throughout 
the domain except near the upper boundary, $=T, where 
a partly square net is used. For such a grid (viz, for which 

SE=P-S=E-SE=h and NW-W=N--P=NE-E = 
h’), the following approximation (Yeh 1969) may be used: 

N-W - N = N -NE = W - B = P  - E  = SW - S = S - 

(A+l )x (E)+(A-Y)x(W)  hD 

2Ch2 hh’F 2hC hh‘F 
+ [ h ‘ ( h + h ’ ) + ~ ] x ( N ) + [ ~ - ~ ]  ’(’) 

+- [x(SW)-x(NW)+x(NE)-x(SE)] 
(h+h’) 

2hC (h’-h)hF 
h’ 

The boundary condition (19) can be approximated by 
the finite differences 

x(P)-xX(S)=O at $=O (22 1 

x(P)-xx(N)=O at $=T. (23) 
and 

Boundary condition (18) should be taken theoretically a t  
4 = ~  and requires, therefore, an approximation for the 
numerical scheme. For the present problem, it was 
decided to assume that the strip shown in figure 1 extends 
only up to 4=3. For most problems in the lower atmos- 
phere, this would seem quite satisfactory, since it cor- 
responds in the original physical plane to an elevation 
or distance about 20 times the size of the evaporating 
surf ace. 

Apply eq (20) and/or (21) to each interior point of the 
working domain and eq (17), (18), (22), and (23) to  the 
boundaries of the strip shown in figure 1 ;  a system of 
linear algebraic equations determining the functional 
values of the interior points is obtained: 

AX=V (24) 

where V is a constant vector in which the components 
are determined by eq (17) and (18); X is the unknown 
vector having the functional values of the interior points 

FIQURE 1.-Solution domain for eq (14) represented by a square 
grid (eq 20) everywhere except near $=P where a partly square 
grid (eq 21) is used. 

as its components; A is the matrix whose elements are 
obtained from the finite-difference operators Lh and Lhh’, 
and the boundary conditions (22) and (23). 

An elimination method was used to solve the system 
of eq (24). Due to limitations of computer storage, the 
grid size could not be selected as small as would be 
desirable to reduce the discretization errors. Therefore, 
for this purpose, the elimination procedure was applied 
in conjunction with a successively refined grid size. I n  
other words, initially, a large grid is taken for the whole 
domain extending to 4=3.  This first solution then provides 
the boundary condition for a much smaller domain ex- 
tending only between tp=O and a fraction of $=3 and 
with a correspondingly smaller grid size. This new solution 
obtained with the refined grid is then used again as a 
boundary condition for the next step, and so on if neces- 
sary. Accordingly, the calculations were first carried out 
with a grid size h=0.15 that was eventually refined to  
0.075. 

The system of eq (24) involves three parameters, m, a,, 
and d, which must be known to obtain physically realistic 
results with the numerical calculations. Very little is known 
about the parameter d. Pamamoto and Shimanuki (1964) 
have analyzed experimental data from projects Prairie 
Grass and Green Glow and found that under neutral 
conditions the ratio Kv,/Kzz has a value of about 13. From 
their study, no simple conclusions can be drawn about the 
dependence of this ratio on the stability of the air. Never- 
theless, the range of K,,/K,, seemed to lie roughly between 
1 and 100. Although it is known that K,, is usually some- 
what larger than Kyy, for the present study in which it is 
merely intended to evaluate the sensitivity of the solu- 
tion, this parameter d=K,,/K, is also assumed to lie in 
this range. The parameter m is known to have a value of 
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FIQTJRE 2.-Wind profiles as given by u/(2.5u,) versus elevation z 
for the power law and the logarithmic law. 
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TABLE 1.-Results of numerical solution of eq (I*) for different m 
and xo with ao=9,  d=10 given as (E-rE. ) / {p ,u*(q , -q~)J  

I - 
0 

y1 
L 

I I 
y1 
I 

6 

FIGURE 3.-Reduced evaporation rate versus size of the evapor- 
ating surface as obtained by numerical solution of eq (l*, solid 
line), eq (25, dashed line), and eq (26, dash-dot line) for m= 117, 
%=7 and 9, and d= 10. 

1*0°* 

1/7 under neutral conditions and to decrease with de- 
creasing stability. Although this is an admittedly rough 
approximation, small deviations from neutral stability can 
thus be represented by values of m that deviate slightly 
from 1/7. The parameter a, depends mostly on the rough- 
ness of the surface and also other factors such as the 
stability of the air. For neutral conditions, it can be ob- 
tained by .matching the power profile with the logarithmic 
profile. Of course, as illustrated in figure 2, the problem is 
where to match the two curves. This matter will be further 
discussed below. 

l o o  I O 2  IO 10 

2x0km1 

FIGURE 4.-Same as figure 3, but for m= 1/7, ao=9, and d= 100. 

The calculations were carried out for combinations of 
three different values of each parameter m, ao, and d. The 
results are given in tables 1,2, and 3 and in figures 3 and 4. 
To determine the effect of the longitudinal diffusion term, 
one must compare the solution of eq (24) with the solution 
of the equation in which this term is neglected. Fortu- 
nately, however, for this case [viz, for eq (1*) but without 
the first term on the right-hand side], an analytical solu- 
tion is available, which was first obtained by Sutton (1934) 
using a different physical model for u and Kzz. Adaptation 
of that solution to  the present physical model and trans- 
formation into a simpler form (cf. Frost 1946, p. 24) gives 

E--TE,= p o ~ ,  (nm-q:>/{ r (.) .i--pqi - y )  m ; a ; - 2 ~  1 (25) 

where v=m/(l+2m). The results of calculations performed 
for some of the same values of the parameters used in the 
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solution of eq (1*) are shown in figures 3 and 4. Compari- 4. SOLUTION WITH THE LOGARITHMIC LAW 

aO=9, d=10 given as (E-rE.)/{p,u*(q,-q~) 1 
100 102 lo( 10s 

Numericalsolution _ _ _ _ _ _ _  0.4637 0.Z720 0.1631 0.0978 0.0686 0.0361 
Analytical solution.-. _ _ _ _  .4660 .a33 .1639 .0982 . W 9  . O W  0.01 0.3212 0.1476 0.0863 0.0618 0.0309 
Errorinpercent ____..__._ -.606 -.478 --.a -.4M -.610 --.SIX 20 .M16 .2341 .I211 .m22 .M33 

son of these two sets of results shows the rather puzzling 
fact that the inclusion of the longitudinal diffusion term 
seems to decrease the evaporation. The negative effect of 
longitudinal diffusion is also confirmed by a perturbation 
solution of eq (1*) that will appear in a later communica- 
tion. This puzzling result may perhaps be explained by the 
fact that, while forward diffusion provides one mechanism 
for mass transfer, it may also damp the mass transfer by 
advection. At any rate, the net effect of forward diffusion 
is very small; and as seen from this numerical solution 
(figs. 3 and 4), it can be neglected. 

Actually, for large evaporating surfaces, this result is to 
be expected from dimensional reasoning. However, dimen- 
sional reasoning only gives a qualitative idea and does not 
permit the exact determination of the lower limit on the 
size of a “large” area without the experiments or calcula- 
tions of the present type. Similarly, for extremely small 
surfaces, the same dimensional reasoning (Brutsaert 1967) 
leads to  the conclusion that, in eq (l*), the advection term 
is negligible as compared to the longitudinal eddy diffusion 
term. The solution of this case under the present boundary 
conditions and for the present physical model (Brutsaert 
and Yeh 1969) gives 

10s 

0.0192 
.0262 

E- = ( pID - d)  2 drnflr (1 -m/2) 
-+ h (1 -m) r2[ ( 1 -m> /2] r (m/2>uo 1. (26 1 

To determine what exactly should be meant by an “ex- 
tremely small” surface, the results obtained with this 
equation are compared in figures 3 and 4 with the numer- 
ical results obtained from the complete eq (l*). This 
shows that the two solutions tend to come together for 
decreasing xo. However, as such, the extremely small 
surface is probably never encountered in nature. Never- 
theless, this case is of theoretical interest since it shows 
the general tendency of the parameters for decreasing 
evaporating surface areas; and it allowed the evaluation 
of the effect of lateral eddy diffusion under extreme 
conditions. 

To check the validity of the comparisons shown in 
figures 3 and 4, it  was necessary to determine the accuracy 
of the numerical scheme for solving eq (l*). This was 
done by omitting the longitudinal diffusion term [i.e., by 
putting E in eq (14) equal to zero]. The results of calcula- 
tions are listed in table 4, and comparison with the 
analytical solution (eq 25) shows that the total error in the 
numerical scheme is probably smaller than 1 percent. 

After having shown that forward diffusion is negligible, 
it is the purpose of this section to  test the validity of the 
power law for the wind profile in the prediction of evapo- 
ration from large water surfaces. Equation (1 *), neglecting 
the longitudinal term, must be solved with u(z)  and Kzz 
given by eq (9b) and (lob); the results must be compared 
with the analytical solution (25) or with the numerical 
solution for m=l/7 with e=O.  

For comparison with the earlier numerical results 
obtained through transformation (12) with m=l/7, the 
following transformation is introduced: 

From here on, following the same procedures and 
transformations as those used in the numerical solution 
with the power law for e=O,  we obtained the numerical 
results given in table 5. I n  figure 5 ,  these data are com- 
pared with those obtained by means of eq (25) based on 
the power law. The results show that, for most values 
of zo of interest, the logarithmic law gives evaporation 
values that are approximately equal to those given by 
the power law, provided that zo and a, are chosen such 
that the two wind profiles are matched as shown in 
figure 2. 

The relationship between a. and zo is now analyzed. 
Table 6 shows the variation of evaporation with a. for 
m=1/7. Table 7 gives the dependence of evaporation on 
zo for a certain lake size, 2z0=104 cm. The former is 
obtainable with the power law for the wind profile either 
by the numerical method for e=O or by the analytical 
solution (eq 25). The latter is obtained with the logarith- 
mic law by the numerical method. From these results 
that are plotted in figure 6, figure 7 is plotted showing 
a. versus zo for constant values of evaporation. This 
shows that, under neutral conditions, the power law for 
the wind profile is valid in the prediction of eva.poration 
from lakes provided that uo is chosen from figure 7 for a 
given zo. Looking back to figure 2, one sees that, with a 
pair of a, and zo from figure 7, the two profiles match 
between 1 cm and 5 m. Furthermore, it is seen that, for 
larger zo, the intersection point of the two profiles is a t  
a higher elevation. From figure 7, an empirical formula 

TABLE 5.-ResuZts of numerical solution of eq (1”) neglecting z 
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a0 

( E - r E J  IP& (n.-nao) 1 

can be derived relating uo with zo in the range of interest, 
namely 

Uo=5.5 ZO'", (28) 

suggested by the fact that a, has dimension (i5-l"). 
Equation (28) is valid only for neutral conditions. Thus, 
for the general case, a relationship between and zo 
might be postulated of the type 

aQ=C2," (29) 

where C amd m would now mainly depend on the stability 
of the atmosphere. Equations similar to eq (28) have been 
proposed in the past. Frost (1946) from mixing length 
considerations reasoned that C= ljm, or C=7 under neutral 
conditions. Calder (1949, p. 165) calculated values of C 
lying between 4 and 7 and values of m lying between 
114.5 and 1/8 for diffusion from a line source. At any rate, 
these different values only confirm that the present 
numerically obtained result (eq 28) should provide a 
reasonable basis for practical evaporation calculations. 

4 5 6 7 8 9 10 11 12 13 

0.1106 0.0930 0.0807 0.0716 0.0646 0.0589 0.0543 0.0504 0.0471 0.0442 

1 .oo, 1 

20 

( ~ - ~ ~ ~ ) l f P ~ ~ * ( T ~ - q ~ ~ ) l  

FIQURE 5.-Reduced evaporation rate versus size of the evapor- 
ating surface as obtained by numerical solution of eq (1*) 
neglecting forward diffusion for the logarithmic law (solid line) 
and by analytical solution (eq 25) for the power law (dotted 
line). 

0. w1 0.002 0.004 0.01 0.02 0.04 0.1 0.2 0.4 1.0 

0.0402 0.0436 0.0470 0.0520 0.0662 0.0606 0.0671 0.0725 0.0783 0.0866 

0.001 0.01 0.1 1 
z , lcm)  

FIGURE 6.-Variation of the reduced evaporation rate with a. and 
with zo as obtained by means of analytical solution (eq 25) for 
the power law and by means of the numerical solution neglecting 
forward diffusion for the logarithmic law, respectively, for m= 1/7 
and 22,= 104. 

5 t  

0.001 1 

FIQURE 7.-Relationship between, a and zo obtained from figure 6. 

TABLE 6.-Variation of evaporation with ao determined from the analytical solutions ( e p  26); these data are also obtainable from numerical solution 
of eq (1  *) neglecting x diffusion. 

TABLE 7.-Variation of evaporation with zo determined from the numerical solutions of eq (I*) neglecting x diffusion 



500 MONTHLY WEATHER REVIEW vel. 99, No. 6 

5. CONCLUSIONS 
The two successive transformations of the independent 

variables of eq (12) or (27) and (13) provide a convenient 
way of avoiding the numerical difficulties inherent in the 
two-dimensional type’ of evaporation or cooling boundary 
conditions of the present problem. Comparison with the 
exact solution for a simple case shows that the error in the 
proposed method is probably smaller than 1 percent. 

The numerical experiments with this scheme show that 
longitudinal diffusion is negligible as compared to wind 
advection if the evaporating surface is larger than, say, 
10 cm. They also show that the power law can be as 
useful as the logarithmic law under near-neutral conditions 
provided a, is chosen according to figure 7 or eq (28). 

Further investigations are required on the validity of 
the power law under diabatic conditions. Nevertheless, it 
is expected that the power law will give good results in 
the prediction of evaporation if the power index m and 
the coefficient are chosen such that it matches the 
experimental wind profile or other more sophisticated 
laws describing the wind profile. 
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